Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells.

نویسندگان

  • Yu Wang
  • Shi Wun Tong
  • Xiang Fan Xu
  • Barbaros Ozyilmaz
  • Kian Ping Loh
چکیده

The major efforts in solar energy research are currently directed at developing cost-effective systems for energy conversion and storage. [ 1–3 ] The high cost of materials and preparation methods that are required for the fabrication of inorganic solar cells prevent their widespread deployment. Seeking a low-cost alternative in the form of solution-processable or roll-to-roll printable organic solar cells features prominently in the energy research roadmap. The conventional anode of choice for organic solar cells has been indium tin oxide (ITO), which consumes as much as 30% of the fabrication cost in solar cells. High quality ITO is expensive due to the dwindling supplies of indium. ITO also suffers from drawbacks like brittleness, sensitivity to acids and bases during processing, and reactive interface formation with copper indium sulfi de during high-temperature sintering. Graphene fi lms have been proposed as the new generation of multifunctional, transparent, and conducting electrodes. The attractiveness of graphene arises from their low cost, transparency, high electrical conductivity, chemical robustness, and fl exibility, as opposed to the rising cost and brittleness of ITO. [ 4–6 ]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conducti...

متن کامل

Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells

Abstract: Perovskite solar cells have become an attractive subject in the solar energydevice area. During ten years of development, the energy conversion efficiency has beenimproved from 2.2% to more than 22%, and it still has a very good potential for furtherenhancement. In this paper, a numerical model of the perovskite solar cell with thestructure of glass/ FTO/ TiO2/...

متن کامل

High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer

Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...

متن کامل

Graphene Oxide:Single-Walled Carbon Nanotube-Based Interfacial Layer for All-Solution-Processed Multijunction Solar Cells in Both Regular and Inverted Geometries

Over the past decade, advances in material synthesis and interfacial engineering have produced more efficient polymer solar cells with improved absorption of the solar irradiation and charge carrier transport that have led to continuously increased power conversion efficiencies (PCE), recently surpassing 8%.[1] In parallel to the material design and engineering in the active layer, novel organi...

متن کامل

بررسی اثر فازی آلومینا بر بلورینگی لایه پروسکایت در سلول‌های خورشید پروسکایتی

Organic-inorganic perovskite (CH3NH3PbI3), due to an appropriate energy gap to absorb sunlight, is used as an absorbent layer in third generation solar cells. Crystallinity of light absorbing layer plays an important role in the performance of perovskite solar cells and substrate plays an important role on crystallinity of light absorbing layer. In superstructure solar cells, alumina (aluminum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced materials

دوره 23 13  شماره 

صفحات  -

تاریخ انتشار 2011